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ON THE THEORY OF STATIONARY VELOCITY OF PROPAGATION OF AN
EXOTHERMIC REACTION FRONT IN A CONDENSED MEDIUM
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It has been demonstrated experimentally that in the combustion
of many explosives and powders in the condensed phase (k-phase) an
exothermic chemical reaction occurs, Although the heat release in the
k-phase is usually small in comparison with the calorific value, it
may play an important role in the multistage reaction in the combus-
tion zone,

Analysis of the heat balance of the k-phase reveals that in a
number of cases heating of the substance before gasification is pri-
marily due to self-heating, According to the thermocouple measure-
ments made by A. A, Zenin, ‘the heat release in the k-phase during
combustion of nitroglycerine N powder is more than 80% of the total

quantity of heat in the heated layer of the k-phase (pressure ~ 50 atm).

This makes it possible to speak of the propagation of the exothermic
reaction front in a condensed medium as the first stage in the com-
bustion of condensed systems. Cases are also known where the pro-
pagation of the reaction front is maintained only by self-heating
(flameless combustion [1]), and there are cases when such propagation
is not accompanied by gasification (combustion of thermites, some-
times the polymerization process). Theoretical investigations of sta-
tionary propagation of a reaction front in a condensed medium were
made in [2-6]. We note that this problem is also of interest in rela-
tion to the study of various nonstationary phenomena associated with
the combustion of powders [7-9]. One of the principal theoretical
problems is the derivation of a formula for the velocity of propaga-
tion of the reaction front in the k-phase, The Zel'dovich—Frank-
Kamenetskii method [10] was used in [2-5] in the solution of this
problem.

This paper is an investigation of the applicability of the Zel'do-
vich—Frank -Kamenetskii method to the case of propagation of a zero-
order reaction front in the k phase. A method is proposed for deriving
a formula for the propagation velocity of the front leading in the case
of a'zero-order reaction to a formula identical to that obtained using
the Zel'dovich—Frank-Kamenetskii method, and this method is then
used to derive a formula for the propagation velocity of a first-order
reaction front in the k-phase. The upper and lower limits of the velo-
city given by this formula are investigated.

The propagation of a reaction front in a condensed
medium differs from the propagation of a flame
front in a homogeneous gas mixture. In a condensed
medium the diffusion of reagents may be neglected
and the diffusion coefficient D may be considered
equal to zero. As a result of gasification, the chem-
ical reaction in the k-phase cannot go to completion,
and therefore the quantity Q of heat released prior
to gasification may be not equal to the thermal effect
h of the reaction in the k-phase.

In the case of multistage combustion at the gasi-
fication surface, there is a finite heat flux qg- Fi-
nally, in the case of a first-order reaction in the
k-phase the equation describing the thermal pro-
cesses has a form appreciably different from that

TA. A. Zenin, Candidate's Dissertation, Institute of
Chemical Physics, Moscow, 1962.

of the equation describing the thermal processes
during the combustion of gases. This difference
can be attributed to the fact that the condition D =

- =0 in the k-phase, in contrast to the condition of

equality of heat conductivity and diffusion coef-
ficient in a gas, obviously cannot lead to similarity
of the concentration and temperature fields.

First, we will consider the propagation of a zero-
order reaction front.

The heat conduction equation and the boundary
conditions have the form

d2 dT
Mo —mel LhD(T) =0 (—e<2z<0), (1)
dr
T (—~o0)=T,, TO)y=T1, }"d_x x:0=qs' (2)

Here T is temperature, A the heat conductivity,
¢ the specific heat, m the mass velocity. of the re-
action front, h the thermal effect of the reaction in
the k-phase, and ¢ (T) the dependence of the rate of
the chemical reaction on temperature. We assume
that the reaction in the k-phase proceeds at a con-
siderable rate at temperatures close to the tem-
perature TS at the gasification surface. This cor-
responds to the assumption of high activation en-
ergy for an Arrhenius relation & (T).

Equation (1) formally coincides with the equation
describing the thermal processes during combustion
of a homogeneous gas mixture [10].

We will now obtain an approximate expression for
the mass velocity m of the front by the Zel'dovich-
Frank -Kamenetskii method. Dividing the region of
temperature change into two subregions Ty =< T =
Tg and Tg = T = Tg in such a way that heat re-
lease can be neglected in the first subregion, and
convective heat transfer can be neglected in the
second, and integrating the equations in each zone,
we can derive expressions for the heat flux on the
boundary of the subregions.

In the first subregion

dT
7\,% Ts—o::mC(T‘__TO)' (3)

In the second subregion

TS
=N L =lar 0 (s o, 6 (s,E) = 24k S(D(T)dT,(zL)
€ T

From (3), (4) we find

_lg248 (s, 0"
T (T, =Ty

(5)
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Making the assumption that the temperature in-
terval in which heat release occurs is narrow, we
exclude from (5) the indefinite quantity Tg and obtain
a formula for the mass velocity of the front of a
zero-order exothermic reaction in the k-phase
(the velocity of the gasification front)

2.8 (s, O)}'h
m— 1708 O (6)

(T,—Ty)

Under conditions of flameless combustion it is
necessary to assume in formula (6) that qg = 0,
c(Tg — Tg) = Q. We will show that (6) can be de-
rived by a somewhat different method. As before,
we divide the region of temperature change into two
subregions, and after integration of the heat con-
duction equation in the first subregion, we arrive at
formula (3).

The quantity Q of heat released in the second sub-
region is

0=L glm (T) [’%T‘dr‘

T!

The temperature gradient in the integrand is re-
placed by its mean value in the chemical reaction
zone; then

. 8 (s, g)
mQ = PRy Md?‘%/dz]n . (7)

On the other hand, the heat release in the reac-
tion zone is

szl‘g— — s - (8)

T!
Using formulas (3), (7), (8), we find an expres-
sion for mass velocity m, which after elimination of

the indefinite quantity Tg , as in the Zel'dovich-
Frank-Kamenetskii method, assumes the form (6).

Thus, in deriving the formula for the velocity of
the zero-order reaction front in the k-phase, the
Zel'dovich- Frank-Kamenetskii method and the
method using averaging of the temperature gradient
in the reaction zone lead to an identical result.
Gradient averaging is used below for finding a for-
mula for the velocity of a first-order reaction front.

It was shown in [11] that the accuracy of the for-
mula for the flame velocity in a gas increases with
decrease of the temperature interval in which the
chemical reaction proceeds. Formula (6) also pos-
sesses this property.

We introduce the notation

M@ (T)
T,—To

®=me, Q1) =

In addition, besides the function T(x), we intro-
duce the function p(r) = Ad7/dx. Then (1) and the
boundary conditions (2) can be represented in the
form
p(@) =0,

p%—«>p+(v(f)=0, p{1) = p,.(9)

28

Here ¢{(r) - 0 when 0 <7 <t and ¢ (1) - 0 when
L <7 < 1.

In the interval 0 < 7 <& solution of (9) has the form
p (r) = wr. The upper and lower bonds for w, which
we denote by whand w-, can be expressed in terms
of the upper and lower bonds for the ordinates of
the curve p (r) at the point T = £ (p" (&) and p~ ().
To determine pt (€) we will consider (9) in the in-
terval € < 7 < 1. An upper bond of the solution of
(9), satisfying the condition p (1) = pg, on this in-
terval is the solution of the equation p*dp'/dr = —
— @ (r) with the condition p* (1) = pg. It has the form

1
PO =pE 2, oyt v - &(p(t)dt.

T
Therefore, as an upper bond for p (&) we can take
o < g7 [pA R 20(1, 0}, p'(e) = (p2+ 28 (1, 01" (10)

The lower bound of the solution p(7) will be the
solution of the equation

dp-ldt =0 —@ (1) /p" (1), p (1) = p,.

It has the form p (1) = —o(1—1) + V28(1,7) + p7.
Accordingly, the lower bound for w is
S pe) el RV a2
07 = == . .

It follows from the explicit form of the upper and
lower bounds for w that with decrease of the tem-
perature interval within which the chemical reac-
tion occurs, that is, as € — 1, both bounds tend to a
single limit

o=V pF+28(10).

This formula is obviously equivalent to (6).

The description of the chemical reaction in the
k-phase in terms of zero-order reaction kinetics is
valid only when the quantity of heat released in the
k-phase is considerably less than the thermal ef-
fect of the reaction in the k-phase. The physical
picture corresponds more precisely to the as-
sumption that the reaction in the k-phase is a first -
order reaction.

We now obtain a formula for the velocity of pro-
pagation of a first-order exothermic reaction front
in the k-phase by approximate integration with av-
eraging of the temperature gradient in the reaction
zone.

The equations describing the stationary propa-
gation of a first-order reaction front in the k-phase
in the case of completion of the reaction as x ~— =
have the form

a:r {T o
o5 — me S+ ha® (Ty = 0, (11)
e
mE e a®(T) =0,  _seirs oo, (12)
T'(—oc) =Ty, t{— o) - a,,

T{oo)=— Ty Ty hap/e. (13)
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Here a is the concentration; the remaining no-
tation is the same as before.
After eliminating the heat release function from

equations (11), (12), ana integrating between the limits

- x, we obtain

N ¢ o A dT
a(r) =ag— (1 _T°)+Wz—}§ .

(14)

Integrating (11) in the region Ty = T = Tg, in
which heat release can be neglected, and using the
boundary condition at the "cold" boundary, we ob-
tain (3) for the heat flux at the point with temper-
ature T = Tg.

In the case of a first-order reaction, the equa-
tion for the quantity of heat release in the k-phase
has the form

mQ =1 \ a(@)® (T (2)]dz. (15)

After replacing in (15) integration with respect
to the coordinate by integration with respect to
temperature, taking into account that in this case
Q = hay, and substituting the expression for ¢(x),
given by (14), we obtain

Ty

may =- Hrau — (T =Ty 4

h
TE

A dT {7 11
- A W] [%] @O (T)dT. (16)
Then averaging the temperature gradient over
the reaction zone in (16), just as in the case of the
zero-order reaction considered above, from (3),
(8), (16) for the velocity of the reaction front we
find

r

N\ (rydr 4

2he 3 Al m F g -7»1"2
agh | \ ([1_1)(1)([)de .
7

|
M= -5
l ay?h? )

o

The accuracy of this formula can be estimated
after finding estimates for m, the eigenvalue of
problem (11)-(13).

In determining the upper and lower bounds, we
convert from the unknown function T(x} to the func-
tion p (r) = Ad7/dx, and we introduce the notation

w=me, v (T =T)/I (T, =Ty, ¢(1)="Ard (7).

With (14) taken into account, equation (11), condi-

tions (13) and formula (17) reduce to the form

dp_ e _ (—9¢@
dv o P(T)

’

pYy=0, plHy=0 O<,

@ = (61, 0y + 2u (L, 0))%,
1

(01,0 = {1 =g (m)dr). (18)

0

First we will obtain an upper bound for w.

For this purpose we use not only (18), but also
the equation

P 9@+ —T ()

2 = prO)=p (1) =0. (19)

In view of the properties of ¢ (r), in accordance
with [12] it can be assert3d that (19) always has a
unique solution p*(r, w).

We will now compare the relative position on
the plane p, T of the curve p* (7, w+) and the inte-
gral curve (18), passing through the point p (1) =
=0, when w = w™. It can be stated that the curve
p(7, wt) passes below the curve p*+ (7, wt), that is,
pt(7, w¥) = p(7, wH).

In fact, the curve p* (r, uo+), issuing from the
point p= 0, T= 1 at a larger angle than the curve
p@r,wh) r=1, dp"/dr = —=, dp/dr = — ¢ (1)/w™),
thereafter cannot intersect the latter, because at
the point of intersection we would have dp'/dr =
dp/d7. But this inequality occurs only if p+(~r) s> w',
However, the latter relation does not occur.

The following relation between the ordinates at
the point 7= ¢ follows from the relative postion of
the p* (r, w®) and p (v, @) curves

P, o) > ple, ah) (20)

As pointed out in [13], the value p (g, w) does not
decrease with decrease of w. It follows from this
property of the p (r, w) curves and the inequality (20)
that the eigenvalue w of (18) satisfies the inequality
w<wt,

Using the formal analogy of the problem (19) to the
problem of the propagation of a zero-order reaction
front in the k-phase considered above, it is possible
to write an explicit expression for the upper bound
for w

o= V200,0) -+ 2p(d. 0y, (21)

We will now obtain a lower bound for w. We con-
sider the equations
*_@ﬂgn:&(“—ﬂmﬁﬂi

(0]
' o* r(T, w*)

it

7 —— ———L

[0} -

800 _p(,0)

[0} 0] ®

, b ) w(t, o) (22)

Here w¥* is the eigenvalue of the problem (18).
The first of equations (22) was obtained by inte-
gration of:(18), with the boundary conditions taken
into account.

The second of equations (22} was derived by the
substitution of w* into the integrand on the right-
hand side of the first of equations (22) in place of
the function p (7, w*). With respect to p(7, w*), the
solution of problem (18), it can be asserted that
p(w*, 1) < w*, Therefore, the value w;, determined
by the second of equations (22), satisfies the in-
equality wq < w*,

The quantity w; is still not the lower bound for
w*, since its equation contains w*. As such an es-
timate it is possible to use w-, determined from the
third of equations (22)
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0" =V, 0+ u(l, 0). (23)

This assertion follows from a comparison of the
second and third of equations (22). In fact, let us
postulate the opposite. Assume w= > w*; then the
right-hand side of (22) is smaller than the right-
hand side of the second of equations (22), and wy >
> w* which contradicts the previously established
inequality wy < w*.

Thus, the quantity w*, proportional to the velocity
of propagation of a first-order exothermic reaction
front in the k-phase, lies in the range

*

o <o* o' (24)

The values w* and w-are given by (21), (23). It
can be seen that the value of w, given by (18), which
was obtained by averaging the temperature gradient
in the combustion zone, lies within the mentioned
limits. We note that the formula for the velocity of a
polymerization front, established in [3], leads to
velocity values falling within the determined bounds.

If it is assumed that in equations (11), (12) the
rate constant of the chemical reaction has the form
& (T) = B exp(—E/RT), after substitution into (17)
and approximate integration by the Frank-Kamen-
etskii method we obtain

mp _ BART2 _F
=R ®XP g -

(25)

When the processes in the k-phase constitute the
first stage of a multistage combustion process and
the k-phase occupies the region —~ < x = 0, in de-
riving the formula for the velocity of the reaction
front it is necessary to use as a point of departure
equations (11), (12) with other boundary conditions,
which in this case have the form

T(—o)=T,, a(—oo)_:aﬁ,
T
rO="7, | =g (26)

Here qq is the heat flux from the products of
gasification in the k-phase. Using the system of
equations (11), (12) with the boundary conditions
(26), by approximate integration with averaging of
the temperature gradient in the reaction zone it is
possibie to obtain the following algebraic equation
for the mass velocity m of the reaction front, that
is, the gasification rate:

mict (T, — Tof — g2 = Ao (T,—T4) +22]x

3 TS

@ (T)dT + 2ch S(TO NN )@ (T)dr .

4

"~

X

=

o Ty
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We note that our formulas for the velocity of the
front of zero- (6) and first-order reactions (27) in
the k-phase were derived on the assumption that the
temperature at the gasification surface is a given
quantity (Tg-regime [12, 13]). As pointed out in [13],
another formulation of the problem of the propa-
gation of an exothermic reaction front in the k-phase
in the presence of gasification (@-regime) is pos-
sible. The problem of determining the velocity of
the reaction front in this regime is not considered
in this paper.
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